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A New Method for Designing Wide.Band

Parametric Amplifiers*

BENGT T. HENOCH~, MEMBER, B

Summary—A practical method of designing wide-band para-

metric amplifiers operated with a circulator is described. For ampli-

fiers with an initially series-tuned varactor, it is possible to find sim-
ple relations between Butterworth and Chebyshev responses of low-

pass filters and desired gain responses of maximally flat or equal-
ripple type. These relations are shown to hold for most practical
varactors. For amplifiers with an initially series-tuned varactor,

simple expressions for the limiting gain bandwidth product are given.
It is also shown how filters should be chosen to give stable amplifiers.

1. INTRODUCTION

sI NCE the wide-band potentialities of single-diode

amplifiers using filter circuits were first discovered

by Seidel and Herrman, 1 various methods for de-

signing proper filter circuits have been treated in the

literature.

Seidel and Herrmanl give design criteria for a filter

circuit of a degenerate amplifier, using the approach of

setting derivatives of the gain function equal to zero at

midband.

Matthaei2 gives expressions fort he gain, suitable for

wide-band design, using the complete equivalent circuit

of the varactor, and shows that considerable bandwidths

can be obtained, using properly dimensioned band-pass

filters in the signal and idler circuits. However, no direct

way of choosing the proper filters is given and a certain

amount of cut and try is involved.

Kuh and Fukada3 treat a parallel-tuned ideal varactor

and give the relations between the power gain and the

reflection coefficient of the lossless coupling networks

terminated by certain resistances. Starting from Bode’s

theorem on reflection coefficient limitation, simple equa-

tions for the limitation on gain and bandwidth are de-

rived. Butterworth filters are shown to give maximally

flat gain.

This paper is based on the results of the mentioned

papers, but the results are extended to give relations

between a desired Butterworth or Chebyshev gain re-

sponse and the Butterworth of Chebyshev filters giving

the desired gain response. These relations are given
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for ideal and practical varactors and simplify the design

procedure for wide-band parametric amplifiers, Using

these relations, it is also possible to study how the

limitation on gain and bandwidths is affected by the

loss resistance and series inductance in the varactor. It

is also shown how the filters should be chosen to give

stable amplifiers,

II. FORMULATION OF BUTTERWORTH OR

CHEBYSHEV MATCHING

To be able to determine proper filters giving wide-

band parametric amplifiers, different ways of formulat-

ing Butterworth or Chebyshev matching, with a lossless

filter between positive resistances, must be studied. The

low-pass equivalent is chosen as shown in Fig. 1.

Fig. l—Circuit used for expressing matching conditions.

As given by Weinberg, 4S5 the Butterworth and

Chebyshev matching can be expressed by imposing

some restriction on the transfer impedance Zzl. For a

Butterworth response we have

(1)

For a Chebyshev response we have

[Z2,12= T v.(u) = Cos (?2 Cos–1 cd).
1 + Wn’(ij ‘ (2)

By expressing the denominator in Zzl in Butterworth or

Chebyshev polynomials the matching filter can be de-

termined.

The restrictions on the transfer impedance lead to

some restrictions on the reflection coefficient. We have

(3)

4 L. Weinberg, “ABC D-network design, easy as pie, ” Proc.
National Electronics Conf., Chicago, Ill., October 7–9, 1957, vol. 13,
DD. 1057–1066: 1957.. .

s L. Weinberg, “lNetw&k design by use of modern synthesis
techniques and tables, ” Proc. National Electronics Conf., Chicago,
111., October 1-3, 1956, vol. 12, pp. 794–817; 1956.
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which give for the respective 13utterworth and Che- 1 + p,’ + 26’vn’(w)

byshev responses,
Zi. = R. —

1 – pol

1,~,,=P02+ C’V?L’(@)
1 + W.’(a)

(4)

1’02=1“+%=(%3
The restrictions on the reflection coefficient p can also

be expressed as restrictions on the input impedance

Zin = Rin +jXi. in the complex ilnpedance plane. We

can write the reflection coefficient at the input as

Zin – Rn
p=

.Zin + Rn “ (5)

Then the Butterworth iTStriCtiOrl on ]P]2 can be re-

written as

1 + poz + 202”
Zi. = R.

1 – pljr

d 1 + plf
2po l+—— eWn~(@) + : 64V,,4(W)

P02
+ R. ———

P02—.—
1 – po’

ey~. (8)

Thus the Zi.(j~) curve in the complex impedance

plane shall approximate a p circle, where p oscillates

between pO and V’p$+~2/l +#. As n is increased higher

and higher derivatives of Rin and Xin have values that

make Zi. follow a ‘(Chebyshev circle. ” In Fig. 2 we show

the Zi. curves for ideal Butterworth and Cheby shev

response.

t Jx,n f J’,.

PF(21 J1-;)R

[ I +J~/ I -P;) R. R!”

3

‘(n

8UTTERWRT!I. C1RCLE ,, CHEBYSHEV .CIRW.

Fig. 2—Z,. curves for ideal Butterworth and Chebyshev response.

v’ 1+p(J2
2prj l+— _u271 + Lw4n

If Rin and Xin are expanded in Taylor series,

+R%—
P02 P02

— ej+. (6)
1 – poz

Zin = ~ ~ RinfnJ~n +j ~ ~ Xin[nj~n
n=o ?4! n.. O ~!

Thus the ZiIl(-j~) curve in the complex impedance

plane is a circle with frequency dependant center and dnRin dmXin
radius, As the frequency derivatives dm/dum of the

Rin(n) c ~(. =o) Xir,(n) = ~; (@ = O). (9)

center and radius are zero for m < 2n, increasing n means

that higher and higher derivatives of R,. and Xi. have Butterworth responses of increasing order can be ex-

values that make Zin follow a constant p-circle in the pressed as relations between the derivatives.

n=z

([ l+poz 2

1

4p/

k

Rin(o) _ _— & + [.yin(o)]z = &2

1 – po2 (1 – p(?)’
W=l

1 + p“~
~in(o) – –— 1R.Rin(l) + XiIL(ojXintlJ = ()

1 – p,’

[

1 + po’
R,,,(o) – __ 1-R.Rin(2)+[Rin(’)]’+.Ym(0).Yin(2)+[X1n(I)]Z=O

1 – po’

[

1 + pi)’
~ Rin(0) _ 1R. Rin(3) + Rin(1)Rin(2) + ~ Xin(0)Xin(3) + Xin(1)Xin(2) = O.
3 1 – p,’

(lo)

complex impedance plane. Similar relations can be found for the Chebyshev re-

sponse.

1 + pi? 2po These relations give the ordinary matching low-pass

Z,. = R. —+ R,, — eid (7) filter listed in filter tables.’ The relations giving cor-
1 – poz p — P02 responding band-pass filters are found if Taylor ex-

pansions around a chosen center frequency U. are used.

The Chebyshev restriction on I p\ z can be rewritten as The given relations are useful when designing a match-
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ing filter between a source impedance Rn and a fre-

quency dependant resistance RI(u). Similar problems

arise when designing filters for wide-band parametric

amplifiers and tuned diode amplifiers. The filter ele-

ments can be determined by using (10), and the general

form of the band-pass filter will be a filter, with series-

and parallel-resonances detuned from the center fre-

quency UU, as shown in Fig. 3.

If the phase of the reflection coefficient must be con-

trolled at COO,this condition must be added to (10) and

a compensating reactance must be inserted on one filter

end, in series, if the last resonance is in parallel and vice

versa.

‘n[:m(’
Fig. 3—Band-pass filter matching into a

frequency-dependent resistance.

cl~pd~.— (14)
cd “

The varying capacitance gives a coupling between

signal and idler circuits, which can be represented as a

negative resistance. The coupling equations (13) and

(14) can be used for two different representations of the

signal-idler interaction, given in Fig. 4. As we assume

that the parametric amplifier is operated with an ideal

circulator, the amplification is equal to the reflection

coefficient in the signal circuit.

1 I I. SIGNAL-IDLER INTERACTION

The frequency mixing in variable-reactance elements

has been treated extensively in the literature.6’7 We

assume that we have a varactor with a capacitive ele-

ment that varies linearily with voltage

Q = c,~d + c,vd2 (11)

in which

vd = voltage over the capacitance,

VO = dc voltage over the capacitance,

C,= static dc capacitance= CO+ Cl VO,

cd= dynamic ac capacitance= CO+2 CIVO.

Furthermore we assume that all unwanted sidebands

are shortcircuited over the capacitance, so that the ac

voltage over the capacitance can be written

when

(12)

~Pd= pump voltage,

~.d = signal voltage,

~id = idler voltage.

If we put the applied voltages into (1 1), and assume

that the pump voltage is large compared to the signal

and idler voltages, we obtain the following relations

between signal and idler voltages and currents in the

capacitive element,

e H. Heffner and G. Wade, ‘(Gain, bandwidth, and noise charac-
teristics of the variable-parameter amplifier, ” ~. .4 ppl. f’kys., VOI.

29, PD. 1321–1331; September, 1958.
7 H. E. Rowe, “Some general properties of nonlinear elements. II.

Small signal theory, ” PROC. IRE, vol. 46, pp. 850-860; May, 1958.

——
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Fig. 4—Representation of signal-idler interaction.

IV. WIDE-BAND DESIGN FOR IDEAL VARACTOR

To start with, we consider an ideal veractor where we

can neglect the loss resistance and series inductance.

Using either shunt or series representation with given

notations the voltage gain G can be written

Z.v, – Z,* zdf+ + Z,* Z,*
G=

—— —, (15)
Z.?J,+ z. ZW2 — z.zb*

It is assumed that Z, and Z~ are built up from band-

pass filters with resistive terminations and so dimen-

sioned that Z, and Z; are symmetrical around the center

frequencies u.O and w,O
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The constant K is later chosen to give the signal and

idler filters the same bandwidth capabilities which are

necessary to obtain optim urn bandwidth. The gain now

can be written

~ = (zc/~/K) ‘ i- Zszs’ (KZCZ(,)2+ ZiZz*

(Zd,/K)2 – 2,2 = (KZm)2 – Z,*’
. (17)

~Tsing the results of Kuh and Fukada3 we ran define

a reflection coefficient p

Z,, – Zm/A’ Z;* – Kz,l”
—— (18)

p = Z, + zdn/h7 Z,* + KZdO ‘

and then the gain can be written as

(1+ [p I’)’

lw’-~ —. (19)

The interpretation of (19) is, that to obtain a

maximally flat gain response, the signal and idler cir-

cuits consist of Butterworth banc[-pass filters matching

the signal and idler terminations into ZdO/K and KZd~.

To obtain a equal ripple gain response the signal and

idler circuits consists of Chebyshev band-pass filters

matching the signal and idler terminations into Z~O/K

and KZdo with a ripple determined by the gain ripple-

When designing a maximally flat gain response we

put a Butterworth restriction on the reflection coeff-

icient given in (18)

pol + (J2”
lp(2=—

l+QF’

which inserted in (19) gives

(Po’ + 11’ + m? + I)@” + 404”
{G[’=–— —

4fJo2 + 4(po2 + l)CW + 4w4n

Go’ + j_(Po)@
>

= 1 + f(p”)d’

where

Pn=Go —dGU2—l

(20)

(21)

(22)

When designing an equal ripple gain response we put

a Chebyshev restriction on the reflection coefficient

given in (18)

(23)

which inserted in (19) gives

where

(24)

We now assume that ZdO is constant over the band

of interest (ovdt sw,, ofJio ). It is now possible to design the

signal and idler filters for a desired gain response by

taking the proper low-pass filter with a response given

in (20) or (23) and transform them into their band-pass

equivalent with incorporation of the diode capacitance

in the filter structure. If the varactor is parallel tuned,

the shunt representation of the signal-idler interaction

is used and if series tuned, the series representation.

When using this procedure it must be assumed that the

signal and idler circuits are independent t of each other.

V. WIDE-BAND DESIGN FOR PRACTICAL VARACTOR

When determining the filter for a practical varactor,

the design given in IV is not adequate. A practical

varactor contains a series loss resistance R and a series

inductance L, shown in Fig. 5. For the given equivalent

circuit it is convenient to use the series representation

of the signal-idler interaction given in Fig. 6.

Fig. 5—Equivalent circuit for a practical varactor.

% - Z:olz; + R z“, . - Z$JZ: + R 2$0 = A,d, ( , .!L$C: a = C,lvpdllcd

Fig. 6—Representation of signal-idler interaction
for a practical varactor.

As we assumed that the parametric amplifier k oper-

ated with an ideal circulator the voltage gain is equal

to the reflection coefficient in the signal circuit.

With the given notations the voltage gain G can be

written

As before we assume that Z, and Z, are built tl.p so that

(16) holds.
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A] Degenerate A mplijier

To start with, we restrict the treatment to a degen-

erate amplifier where we have h’z = 1. The single side-

band voltage gain G for a degenerate amplifier now can

be written

zdo~+ (Z.* – R) (z. + R)
G= (27)

2.,’ – (Z3 + R)’ — “

It is practical to start with an investigation of the Z,

curve that gives a constant voltage gain Go. This 2,

curve intersects the real R, axis at two points.

—.—

1‘iGo–1
R., = — Zd

Go+l

d

Go+l
R,, = — zd

Go–I
—

d
R, G,

Zd = Zdu’ + ‘— – R –-.>—
Goz – 1 41&2 –~ ‘

(28)

if a circle is drawn through these points we have

1 1 + pot
z. = Z,* =

1 ?;., ‘de’” ’29)
‘zd+—

1 1 – pot

(PO= Go– V’G02 – 1

which is the 2. curve giving a constant reflection coeff-

icient po into Za. This curve can be used as an approxima-

tion of the Z, curve giving a constant voltage gain GO

and to investigate the accuracy of the approximation we

calculate the gain obtained by using the approximation

for different values of GO and R/zdO. The results are

given in Fig. 7 as AG[db] = 10 log] G~ax 12– 10 log G02

as a function of R/zdO with GO as a parameter.

The calculations show that if a gain fluctuation of

0.4 db is tolerated the approximation is valid for

R/zdO <0.9. This is not a severe restriction as the

varactor is too lossy to give amplification when

R/zdO >1.0. For values of R/zdO where the approxima-

tion is accurate we can define a reflection coefficient p,

Z, – &
p=

Z, + zd
(30)

where z’ is given by (28) and now the gain can be re-

(V (k
10 0

RIZdo
10

R/Zdo

Fig. 7—Maximum deviation from constant
gain for constant p circle.

written as:

IG12=
(1+ Ip]’),

(31)
41p\’”

Using this approximation it is easy to find the filter

giving the desired gain response. ‘

When designing a maximally flat gain response we

put a Butterworth restriction on the reflection coeffi-

cient given in (30),

,p,2=Po’+@

l+u2n’

which inserted in (31) gives

G02 + f(@))W2n
lG]2=— —

1 + j(;o)cd”‘
where

(32)

(33)

PO= Go — /Go2 — 1. (34)

When designing an equal ripple gain response we put

a Chebyshev restriction on the reflection coefficient

given in (30),

12+ ,: V:(:),pl, =Po+~2v2
——

22
(35)

which inserted in (31) gives

where

1PO= GO–4G02–1

/e , _ @ – d~o’ – 1)6,2 + Go – V’G02 + eg2
. (37)

[p– dGo2 + Co’ – 4G02 – ~

Here the fluctuation in zd introduced by the Chebyshev

ripple is neglected, which is permissible for gains and

ripples met in practice.

We now assume that zdo is constant over the band

of interest (u&co, = CIAO2,. If the varactor is series tuned,

so that the series inductance can be conveniently in-

corporated in the first series resonator, it is possible to

design the filter for a desired gain response by taking the

proper low-pass filter with a response given in equation

(32) or (35) and transform it into its band-pass equiva-

lent.

B. Nondegene~ate A mpl~jier

When designing filters for the nondegenerate amplifier

where K2#l, the design formulas differ from the degen-

erate case. For the nondegenerate case the voltage gain

G can be written
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The calculations show that if a gain fluctuation of

0.2 db is tolerated the approximation k valid for

11/Z~~ <0.9. This is not a severe restriction as the

varactor is too Iossy to give amplification when

(38) R/Za> 1.0.

The approximation constant gain curves now can be

written as constant p curves,

As for the degenerate case we start with an investiga-

tion of the Z, and Z,* curves that give a constant voltage

1

1 + po’ Zd 2P~ Zd
z, = ——+—--e’@

gain GO. These curves intersect the real R axis at two l–po’K 1 – poz K ,.-.
points,

~1

R,, = ; (.4 – B) R,l = K(A – B)

R,2=+(A+B) R,, = K(A + B) (39)
(

1 1 + P02 2pij
(42)

Z,* = —KZd+— At”zdd$,
1 – po’ 1 – pl?

where

where (z. = VGFO)]’ - [B(GO)].

If a circle is drawn through these intersections we have

(41)

These curves can be used as approximations of the

Z, and Z,* curves giving a constant voltage gain GO. TO

investigate the accuracy of the i~pproximation we cal-

culate the gain obtained by using the approximation for

different values of GO and R/Z,LO. We choose the im-

pedance ratio K = ~ and the results are given in Fig. 8

as maximum deviation from constant gain.

To be able to use the approximations we define a

reflection coefficient

Z, – zd/K’ Z,* – ~:zd

‘=z, +zd/K=
(44)

Z~* + Kzd

where zd is given by (43).

On this reflection coefficient we can impose Eiutter-

worth or Chebyshev restrictions to obtain desired gain

responses. However, there is no longer any simple rela-

tion between the reflection coefficient pO, and the gain

GO as for the degenerate case. For the previously treated

case with K = ~ we plot the reflection coefficient p. as a

function of R/zdO in Fig. 9.

Fig. 8—Maximum deviation from constant gain. Fig. 9—Reflection coefficient p, as a function of R/ZJ,.
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When designing a maximally flat gain response

(45)

we put a Butterworth restriction on the reflection coeffi-

cient in (44),

/p12=
~02 + ~Zn

(46)
1+02”’

where po is given in (43).

When designing an equal ripple gain response

(47)

we put Chebyshev restriction on the reflection coeff-

icient in (44)

(48)

where PO is given in (43). The ripple ~P2 can be de-

termined by calculating the reflection coefficient pl for

IGlz=
G02 + E,2

—

1 + C,’

from (43) and ~P2 is given by

z _ P02+ %2
(49

‘1– 1+6,2

When giving formulas for the equal ripple gain re-

sponse, we have neglected the fluctuations in zd intro-

duced by the Chebyshev ripple, which is permitted for

gains and ripples met in practice.

We now assume that Z~ is constant over the band of

interest (cqu, =us Oa, O). If the varactor is series tuned,

so that the series inductance can be conveniently in-

corporated in the first series resonator, it is possible to

design the signal and idler filters for a designed gain

response by taking the proper low-pass filters with a

response given in (46) or (48), and transform them into

their band-pass equivalents. When using this procedure

it is assumed, as for the ideal varactor, that the signal

and idler circuits are independent of each other. In prac-

tical design this assumption does not necessarily hold.

This can be compensated by calculating the reactance

from the signal circuit at idler frequency, and vice versa,

incorporating these reactance in the first series or

parallel resonator, according to the actual set up. Then

the first series or parallel resonators can be modified

by step-by-step approximations.

C. Choice of In~t~al Varactor Tuning

It has previously been shown that an easy design

method can be used if the signal and idler filters start

with a series tuning of the varactor, since transformed

low-pass filters can then be used.

If the filters are started with a parallel tuning of the

varactor, the varactor end of the filters, which consist

of the coupling impedance in series with the varactor

capacitance and inductance, must be transformed into

a parallel circuit. The resistive part of this circuit is

frequency dependent, and the proper filters must be

obtained by solving (10). This leads to filters of the

type given in Fig. 3, with added compensating re-

actance to fulfill Z.= K2Z, *. The frequency dependence

in the resistive part can be neglected and transformed

low-pass circuits can be used, if the reactance from the

varactor inductance is small compared to the reactance

from the varactor capacitance, but this is ordinarily

not the case at microwave frequencies.

VI. CHOICE OF IMPEDANCE RATIO

To make full use of the bandwidth potentialities in a

varactor, the impedance ratio K should be chosen to

give the signal and idler filters the same bandwidth

capabilities. The optimum impedance ratio can be de-

termined by applying Bode’s8 theorem on reflection

coefficient limitation and its dual formulated by Fano. g

The formulations are given in Fig. 10.

These theorems hold for low-pass and band-pass cir-

cuits alike. To make the signal and idler filters have the

same bandwidth capabilities we have: if the varactor

is parallel tuned the varactor ends of the signal and

idler filters should have the same RC product, and if the

varactor is series tuned the varactor ends of the signal

and idler filters should have the same R/L ratio. This

gives us the following values of X for different tuning of

the varactor:

1) for a parallel-tuned ideal varactor,

K2=1 (50)

2) for a series-tuned ideal varactor,

(51)

m’ “n[l’’p’2)b-2R

m’ ““(’’’”’’’”=2”
Fig. 10—Theorems on reflection coefficient limitation.

8 H. W. Bode, “Network Analysis and Feedback Amplifier De-
sign, ” D. Van Nostrand Co., Inc., New York, N. Y., pp. 360-367;
19+5.

‘ R. M. Fano, “Theoretical limitations on the broadband match-
ing of arbitrary Impedances, ” J. Franklin Inst., vol. 249, pp. 57-83;
January, 1950; pp. 139-154, February, 1950,
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For a practical varactor we only consider series tun-

ing of the varactor. Reactive elements are added in

series to the varactor to obtain series resonances to

u,O and u~o. We assume that the va.ractor can be tuned

independently at U,O and a,o. For three different cases

we have:

1) The self-resonant frequency of the varactor is

above U,O and ti,o

K2 – ‘s02,
W602

(52)

2)

3)

The self-resonant frequency c]f the varactor is be-

tween u,O and uio

Kz = W,02(1 – az)~d~s,

The self-resonant frequency of the

low U.O and CO,O

K’ = 1.

(53)

varactor is be-

(54)

As pointed out by Matthei,2 it is difficult to tune the

varactor independently at U,O and tito, unless there is a

first series resonator common to signal and idler. The

resonator is series resonant at both Q,O and a~o, and the

value of K can be expressed in the reactance shapes of

the resonator,

XS’ = reactance slope at ~,.

xl = reactance slope at CO;.

(55)

VI 1. BANDWIDTH LIMITATIONS

When designing an amplifier for a certain gain GO and

increasing the order of the associated Butterworth or

Chebyshev filters without limit, the bandwidth goes

asymptotically toward a limit (Ao~) ~. This limit can be

determined by applying the theorems on reflection co-

efficient limitation. With the chosen gain GO is associated

a reflection coefficient PO in the signal and idler circuit.

In the general case PO is determined by equation (43).

We give the limiting bandwidth for a series-tuned prac-

tical varactor in the nondegenerate case. The theorem

on reflection coefficient limitation gives

(56)

We give (Au). and lim (Ati) m when R+O for the cases

where the optimum impedance ratio was determined.

1) the self-resonant frequency is above co,o and CO;O

2) the self-resonant frequency is between CO,Oand co;O

——

d(1 – a’)cd ,,
‘A”)”=~:~ “’0 – L. “d

{
‘im.i$)” = ~ (Go - ;Go’ - li~

d

@so a!
.— a ~ (58)

( u,” <(1 – a!’)cdL,

3) The self-resonant frequency is above u,O and ~)io

1 a
——

“<%0%0 (1 – a’)cx, “
(59)

4) with a common series-resonator

Z~ is determined from equation (43).

These formulas for the limiting bandwidth can be

used to determine the optimum ratio between idler and

signal frequency, and to determine how the bandwidth

is effected by the varactor loss resistance. The ratio

I in (G. - V’G02 - 1) I Z,

llrlpol Zclo

determines to what degree the loss resistance decreases

the limiting bandwidth as compared to the limiting

bandwidth of a corresponding Iossless varactor. Form-

ulas for the limiting bandwidth for an ideal varactor

have previously been given by Kuh and Fukada,3 and

Aron.10

Aron’O also gives the relation betweer the 3-db band-

width (Au)N of the reflection coefficient in a Butter-

worth filter of Nth order and the limiting bandwidth

(Aw)_ which can be written

(Au)N

(Aw)~

10 R &on, “Gain bandwidth relations in negative resistance
amplifiers, ” PROC. IRE, vol. 49, pp. 355–356; January$ 196 [,.,
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VI 1. WIDE BAND DESIGN FOR LossY VARACTORS

Calculations have shown that the approximations

made in section V are very accurate for most practical

wide-band design and that the accuracy increases with

increasing gain and decreasing impedance ratio K.

When designing amplifiers with low gain below 10 db

the made approximations can be less accurate for 10SSY

varactors with large R/Z~o and a different procedure

must be used. We restrict ourselves to finding the design

formulas for a Butterworth gain response. The pro-

cedure used is to start from an expression for the gain

(27) or (38) form I G] 2, and expand Z, or Z, in a Taylor

series, as in (9). The Taylor expansion is inserted in the

expression for I G 12, and the derivative relations for

Butterworth gain can be determined. We treat the non-

degenerate case which also includes the degenerate

case and assume that zdO is constant over the band of

interest. As Z~O is constant, only even derivatives of R,

and Ri and odd derivatives of X, and Xi shall be

existent. This means that band-pass filters with all

series and parallel resonances tuned to CO.Oand CO;O,fulfill

the relations. The relations between the derivatives

giving a Butterworth gain response can be written

J JXa

/
/

/

t

\ R,

\

=----- .

PARALLELTUNED SERIESTUNED

Fig. 11—2, cu~ve for constant gain with

aPPrOxlmatlve Butterworth circIes.

IX. WIDE-BAND DESIGN FOR VARACTORS

WITH LARGE CAPACITANCE SWING

For varactors with large capacitance swing (large a),

the bandwidth is increased, so that the approximation

that Zdo is constant over the band, is no longer adequate.

Filters designed for constant zdo will give a gain response

with a slope especially noticable for large idler to signal

frequency ratios. If R/Z~O is small enough to allow the

previously made approximations, the signal and idler

1{
Go2[(@’~)2– (R.(o) + R) (R,(o) + NIV)]’ = [(zdo/K)2 + (R,(o) – @(R,(0) + R/K2)]2

fi=l
~,(l) = x,(o) = ()

Go2(2R, @) + R + R/Kz) [(zdo/K)2 – (k’s(o) + R) (R,(”) + R/K2)I
n=z

I
+ (21L(0) – R + R/K2) [(ZdO/K)’ + (R,(o) – R) (R,(o) + MK2)]

(62)

[X,(1)]2 = ~,(’) — —.

GO2(2RS(0) + R + R/K’) – (R/K’ + R)

When the signal filter is determined the idler filter

can be determined by scaling, since Z,= h“zZi*.

By knowing how the Z, and Z,* curves for constant

gain are affected by increasing R/zdO, some rules for

selecting proper filters can be made by studying the

constant gain curves, as shown in Fig. 11. Increasing

R/zcfO makes the Z, curve for constant gain more ellipse

shaped. By studying the Z, curve in Fig. 11 with asso-

ciated Butterworth circle, we can make the following

rules of thumb for choosing proper filters:

Series-tuned varactor—when choosing a standard filter,

the impedance level at the varactor end should be lower

than that indicated by the intersections the Z, curve

makes with the real axis;

Parallel-tuned varactor—when choosing a standard

filter, the impedance level at the varactor end should be

higher than that indicated by the intersections the Z.

curve makes with the real axis.

The impedance level at the varactor end can be de-

termined approximately, by comparing the third equa-

tion in (62) with the corresponding equation (10) for a

Butterworth filter.

filters shall be designed to match the signal and idler

terminations, maximally flat into the frequency de-

pendent Z,i/K and Kzd for a maximally flat gain re-

sponse. The design criteria will be to fulfill (10) at the

signal and idler terminations and Z,= K2Z,* at the

varactor end of the filters. For the nondegenerate case

a complication is that both Zd and PO vary with zdO.

However, a simple calculation shows that po varies con-

siderably less than zd over the band (For G02= 10,

K =u80/uio = ~ R/ZdO(u.0) = 0.2, Zd varies f 35 per cent

and po i- 5 per cent over an octave-signal bandwidth).

Thus it is a reasonable approximation to design for

maximally flat matching.

For the degenerate case, only even derivatives of

zdo are existent and a band-pass filter with all series

and parallel resonances tuned to u.O can be used. For the

nondegenerate case, the filters will be of the type given

in Fig. 3 with a compensating reactance added.

An approximative design method is indicated by

Matthei. 2 The filters are designed for constant Z~O and

then the resonators are detuned by cut and try to give

an acceptably smooth gain curve.
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X. STABILITY

When designing wide-band parametric amplifiers,

stability must be considered. The criterion for stability

is that the voltage gain G has no poles in the right half

frequency plane (Re [~] <O). 11 Using the gain expres-

sions in (17), (27) and (38) we have the following stabil-

ity criteria:

1) for an ideal varactor,

I+z.,(p) – z.(p) = o
(63)

[Kzdo(p) – z?(p) = o

has no solution for Re [~]< O;

2) for a practical varactor degenerate case,

[2,0 – R] – 28 = o (64)

has no solution for Re [p] <();

3) For a practical varactor nondegenerate case,

[K3’+%+’”%+’)1-z=o—
[d (65)

(Kzdo)’+ :(1 – K’)’ – : (1 + m)]

–Z,*=O

has no solutions for Re [~] <:0.

Applying the iNyquist criteric,n as formulated by

Hughes,lz we can reformulate the stability criteria. We

take the most general case of a practical varactor in the

nondegenerate case.

To have a stable amplifier, a complex plot of Z,(u,)

shall not encircle (l/K) ZCrit, and a. complex plot of

Z,*(ui) shall not encircle A“ZCrit

This means that for a series-tuned varactor, the im-

pedance level is higher at the terminations than at the

varactor end, and for a parallel-tuned varactor the

impedance level is lower at the terminations than at the

varactor end. In Fig. 12, we show the Z., plot of two

possible Butterworth filters of second order.

As pointed out by Aron,1° stability is no limitation,

since of possible Butterworth of Chebyshev filters, the

filters with maximum bandwidth have the poles of p in

the left half plane (Re [p] < O), which ensures stability.

This means that when determining proper low-pass

H lt can be Shown that the signal-idler interaction is valid in the

complex frequency plane if signal and idler voltages of the form
g~t ~os ~t are introduced into (11).

12\V. L. Hughes, “Nonlinear Electrical Networks, ” Ronald Co.,
New York, N. Y., pp. 166–168; 1960.

(
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3-zcRcT/’~

k

( S1ABLE

Fig. 12—Z. plot for two Butterworth filters of second order

filters with Butterworth or Chebyshev response,

solutions with the smallest L:s and C:s should

chosen.

XI. DESIGN EXAMPLES

the

be

Th’e start with determining the same low-pass filters

that will give stable parametric amplifiers. In Fig. 13

stable Butterworth filters of second and third order are

given.

We will now apply the described design method to the

design of a degenerate parametric amplifier with a single

sideband gain of 12 db. The design will be made for

maximally flat gain responses of first, second and third

order. The diode used has a pumping factor a = 0.25 and

zdo and W.O are normalized to unity. The diode loss re-

sistance is R/ZdO = 0.1. The diode series resonal~ce is

above the operating frequency.

The design procedure is as follow. 2,1 and p. are de-

termined from (28) and (29) (GoZ== 16, po=O.1~7,

Z~= 0.897). (Elsewhere, H the author has given diagrams

of po, Zd and maximum gain deviation for different

gains, impedance ratios and varactor losses. These dia-

grams are helpful in numerical design. ) The inductance

needed to resonate the varactor is determined (L= 4).

Using the formulas in Fig. 13, the low-pass network is

determined (R, = zd, LI = L). The band-pass filter is

determined by resonating the low-pass network to U,o.

The gain is determined by (27). The result is given in

Fig. 14.

We also give a simple illustration of how to com-

pensate for frequency dependence in .~do as discussed

in section IX. We assume that we have an ideal varactor

with h’ = u,, O/a, O= $ and a = 0.5. The circuits used are

given in Fig. 15. The varactor is series tuned. CO, O is

normalized to unity.

The compensated circuit is dimensional to fulfill (10)

at the signal and idler terminations and to make

X.(0~0) = .Y, (u, o) = O. The midband gain is chosen to

14 db. The gain for the two circuits are shown in Fig. 16.

The method gives no great advantage for the simple

circuit treated, but can be extended to maximally-flat

gain responses of higher order, althoulgh this leads to

complicated equations.

13B. T. Henoch, “A New Method for Designing Wide-Band
Parametric Amplifiers, “ Stanford 131ectronics Labs., Stanford Uni-
versity, Stanford, Cahf., Tech. Rept. No. 213-1; December, 1962.
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Fig. 13—Stable low-pass filters with Butterworth
response of second and third order.
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Fig. 14—Single sideband gain for a degenerate parametric amplifier
with maximally-flat gain response of first, second and third
order.

~XIII. CONCLUSIONS

A simple method for designing wide-band parametric

amplifiers has been described. The method is applicable

to most practical varactors if the varactor is initially

series tuned.

The problems remaining to be solved are: filter design

for an initially parallel-tuned varactor, and filter design

compensating for the frequency dependence in the

coupling impedance. Both problems are associated with

the problem of designing filters that match a constant

source impedance, maximally flat into a frequency de-

pendent resistance.

Fig.
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Fig. 15—Circuits for nondegenerate parametric amplifier.
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16—Gain for a series-tuned nondegenerate amplifier with and
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