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A New Method for Designing Wide-Band

Parametric Amplifiers*

BENGT T. HENOCHY}, MEMBER, TRE

Summary--A practical method of designing wide-band para-
metric amplifiers operated with a circulator is described. For ampli-
fiers with an initially series-tuned varactor, it is possible to find sim-
ple relations between Butterworth and Chebyshev responses of low-
pass filters and desired gain responses of maximally flat or equal-
ripple type. These relations are shown to hold for most practical
varactors. For amplifiers with an initially series-tuned varactor,
simple expressions for the limiting gain bandwidth product are given.
It is also shown how filters should be chosen to give stable amplifiers.

I. INTRODUCTION
SINCE the wide-band potentialities of single-diode

amplifiers using filter circuits were first discovered

by Seidel and Herrman,! various methods for de-
signing proper filter circuits have been treated in the
literature.

Seidel and Herrman! give design criteria for a filter
circuit of a degenerate amplifier, using the approach of
setting derivatives of the gain function equal to zero at
midband.

Matthaei? gives expressions fort he gain, suitable for
wide-band design, using the complete equivalent circuit
of the varactor, and shows that considerable bandwidths
can be obtained, using properly dimensioned band-pass
filters in the signal and idler circuits. However, no direct
way of choosing the proper filters is given and a certain
amount of cut and try is involved.

Kuh and Fukada? treat a parallel-tuned ideal varactor
and give the relations between the power gain and the
reflection coefficient of the lossless coupling networks
terminated by certain resistances. Starting from Bode's
theorem on reflection coefficient limitation, simple equa-
tions for the limitation on gain and bandwidth are de-
rived. Butterworth filters are shown to give maximally
flat gain.

This paper is based on the results of the mentioned
papers, but the results are extended to give relations
between a desired Butterworth or Chebyshev gain re-
sponse and the Butterworth of Chebyshev filters giving
the desired gain response. These relations are given
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for ideal and practical varactors and simplify the design
procedure for wide-band parametric amplifiers. Using
these relations, it is also possible to study how the
limitation on gain and bandwidths is affected by the
loss resistance and series inductance in the varactor. It
is also shown how the filters should be chosen to give
stable amplifiers.

II. FORMULATION OF BUTTERWORTH OR
CHEBYSHEV MATCHING

To be able to determine proper filters giving wide-
band parametric amplifiers, different ways of formulat-
ing Butterworth or Chebyshev matching, with a lossless
filter between positive resistances, must be studied. The
low-pass equivalent is chosen as shown in Fig. 1.
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Fig. 1—Circuit used for expressing matching conditions.
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As given by Weinberg,*® the Butterworth and
Chebyshev matching can be expressed by imposing
some restriction on the transfer impedance Zy. For a
Butterworth response we have

PR — (1)
21 1 + wQﬂ
For a Chebyshev response we have

T

Iyt = ——————)
| 2] 1+ eV,2(w)

Va(w) = cos (ncos™tw). (2)
By expressing the denominator in Zy in Butterworth or
Chebyshev polynomials the matching filter can be de-
termined.

The restrictions on the transfer impedance lead to
some restrictions on the reflection coefficient. We have

1
Piysorbed = E ] Es|? Pyyarlable = %Rnr I l2;
Pabsorbed
1 — |l = 22t 3
‘ f Pavailable ( )
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which give for the respective Butterworth and Che-
byshev responses,

(lpl2 _ p02+w2n
1 w?»
ol = 2 EETE 0
1 4+ &V,.2(w)
y 47T _ <R1 — R.\?
T T RR, R1+Rn>'

The restrictions on the reflection coefficient p can also
be expressed as restrictions on the input impedance
Zin=Ri,+jXin in the complex impedance plane. We
can write the reflection coefficient at the input as

Zin - -Rn

=0 e e 5
Zin+Rn ()

p

Then the Butterworth restriction on |p|? can be re-
written as

14 po® + 2w
1 — po?

in n

po’

" ; et (6)
— po

Thus the Zi,(jw) curve in the complex impedance
plane is a circle with frequency dependant center and
radius, As the frequency derivatives d™/dw™ of the
center and radius are zero for m <2#, increasing #» means
that higher and higher derivatives of R,, and X, have
values that make Z;, follow a constant p-circle in the
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7. — R, 14 po2 + 22V ,2(w)
1 — P1)2
1 4 po? 1
2p0 /‘/1 + — :0 eV 2 (w) + —264Vn4(w)
+ R, i P — . (8)
1 - Po2

Thus the Z;i.(jw) curve in the complex impedance
plane shall approximate a p circle, where p oscillates
between po and Vpg2+e/14+¢. As # is increased higher
and higher derivatives of R;, and X, have values that
make Zi, follow a “Chebyshev circle.” In Fig. 2 we show
the Z;, curves for ideal Butterworth and Chebyshev
response.
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Fig. 2-—Z., curves for ideal Butterworth and Chebyshev response.

If Rix and X, are expanded in Taylor series,

0

1 1
> — Rin®or 4+ — X i mgon

r=0 %1 n=0 .

Zin

in

dw™

Rin(n) =

arX;
(w=0) X = —dw (w

Butterworth responses of increasing order can be ex-
pressed as relations between the derivatives.

2 2 2
[[Rm«)) — L+ po anl + [Xin(t))]z = 4o — R,?
1 — po* (1 — po?)*
n=1 { R
‘:Rin(o) - f—i— £ Rn] Rin(l) + Xin(U)Xin(l) =0
1 _ p02
n =12 ) , (10)
[Rmm - 1—+ a RnJ Riu®™ + [R®]2 4+ X @ X0n® + [Xn@]2 = 0
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i[Rin(O) - 1 + o R”] Riﬂ(?’) + Rin(l)Rin(Z) + i Xin(o)Xin(g) + ‘Yin(l)Xin@) = 0.
3 1 — py? 3

complex impedance plane,

14 po?
nl“Poz

290

Zin =R el

+ R,
p — po*

7

2 can be rewritten as

The Chebyshev restriction on |

Similar relations can be found for the Chebyshev re-
sponse.

These relations give the ordinary matching low-pass
filter listed in filter tables.’ The relations giving cor-
responding band-pass filters are found if Taylor ex-
pansions around a chosen center frequency wo are used.
The given relations are useful when designing a match-
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ing filter between a source impedance R, and a fre-
quency dependant resistance Ri{w). Similar problems
arise when designing filters for wide-band parametric
amplifiers and tuned diode amplifiers. The filter ele-
ments can be determined by using (10), and the general
form of the band-pass filter will be a filter, with series-
and parallel-resonances detuned from the center fre-
quency wy, as shown in Fig. 3.

If the phase of the reflection coefficient must be con-
trolled at wy, this condition must be added to (10) and
a compensating reactance must be inserted on one filter
end, in series, if the last resonance is in parallel and vice

versa,
5§ “s3 “s1
Rs R0}
“pé “ oy “p2

Fig. 3—Band-pass filter matching into a
frequency-dependent resistance.

I1I. SIGNAL-IDLER INTERACTION

The frequency mixing in variable-reactance elements
has been treated extensively in the literature.®? We
assume that we have a varactor with a capacitive ele-
ment that varies linearily with voltage

Q= CiVa+ CiV? (11)

in which

V,=voltage over the capacitance,

Ve=dc voltage over the capacitance,
Cs=static dc capacitance = Co+ Ci TV,
Cs=dynamic ac capacitance = Cy+2C; V.

Furthermore we assume that all unwanted sidebands
are shortcircuited over the capacitance, so that the ac
voltage over the capacitance can be written

Vo = Vyaeiort + Vgeiost + V geiot (12

ws + Wi = wp,
when

V »a=pump voltage,

V.,q=signal voltage,
V:a=idler voltage.

If we put the applied voltages into (11), and assume
that the pump voltage is large compared to the signal
and idler voltages, we obtain the following relations
between signal and idler voltages and currents in the
capacitive element,

¢ H. Heffner and G. Wade, “Gain, bandwidth, and noise charac-
teristics of the variable-parameter amplifier,” J. 4ppl. Phys., vol.
29, pp. 1321-1331; September, 1958.

7 H. E. Rowe, “Some general properties of nonlinear elements. II.
Small signal theory,” Proc. IRE, vol. 46, pp. 850-860; May, 1958.
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{Tsd = jwacdvsd + jwsclvpdvzd*
\Tzd == jwlcd_v'[d +ijC17de_/sd*7 (13)
or inverted,
(.= ! Tu—j & T
e ]ws(l—— | &|?)Cq « ]wi<1—— |a|)Cy Ld
S ST S S —
= —J————du— ) —— L
| (1 — | &\Z)Cd w,(1 — ‘ &12)Cd
C.V
a=——"0. (14)
Ca

The varying capacitance gives a coupling between
signal and idler circuits, which can be represented as a
negative resistance. The coupling equations (13) and
(14) can be used for two different representations of the
signal-idler interaction, given in Fig. 4. As we assume
that the parametric amplifier is operated with an ideal
circulator, the amplification is equal to the reflection
coefficient in the signal circuit.

IDLER-

SIGRAL- 4 SI1GRAL i L, J

CIRCUST T, - —> IDLER -~ — T CIRCUIT
| Gy Cq )
Zs COUPLING ZI
2 % " 2 g4% 2
Lyg = = 25l 7 2y, = - 5/2} Zgo = Haw (¢) !vpd!)
SHUNT REPRESEKTATIOR
2 2
(1-a®)¢q (1-a2)¢y
ifd I
iU A}

S(GHAL- z, 1y, SIGNAL 3, 1DLER-
CIRCUIT “ > iDLER -« CIRCULT
z! COUPLIXG 4
s '

2 I 2 2 B
1y = - 252} 7, =~ 5,2 Zjo = a¥lww (1-ah)2c} a = ¢y lvglity

SERIES REPRESENTATION

Fig. 4—Representation of signal-idler interaction.

IV. WIDE-BAND DESIGN FOR IDEAL VARACTOR

To start with, we consider an ideal veractor where we
can neglect the loss resistance and series inductance.
Using either shunt or series representation with given
notations the voltage gain G can be written

ZNs - Zs* ZdO2 + Zs*Z1*
Zws + Z, Zao® — Z,L X

(15)

It is assumed that Z, and Z; are built up from band-
pass filters with resistive terminations and so dimen-
sioned that Z, and Z; are symmetrical around the center
frequencies w,p and w,o

zZ* = K*Z,. (16)
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The constant K is later chosen to give the signal and
idler filters the same bandwidth capabilities which are
necessary to obtain optimum bandwidth. The gain now
can be written

(ZdO//K)2 + Zst* (KZdn)z + ZiZI*

= A7)
(Zao/ K)? — 2. (KZap)? — Z**

Using the results of Kuh and Fukada® we can define
a reflection coefficient p

Zs— Zy/K ZF — KZi

b= =L, (19)
Zi+ Zao/K  ZF + KZao
and then the gain can be written as
14 |pl??
|G| = at| - (19)
4] ol?

!

The interpretation of (19) is, that to obtain a
maximally flat gain response, the signal and idler cir-
cuits consist of Butterworth band-pass filters matching
the signal and idler terminations into Zgo/K and KZ 4.
To obtain a equal ripple gain response the signal and
idler circuits consists of Chebyshev band-pass filters
matching the signal and idler terminations into Zz/K
and KZ4 with a ripple determined by the gain ripple.

When designing a maximally flat gain response we
put a Butterworth restriction on the reflection coeffi-
cient given in (18)

po® + w™"
>
1+ wr

lol? = (20)

which inserted in (19) gives

(002 + 1?2 + (pe® + D + oot
dp? + 4(p® + Do + 4wt

Gl =

_ G o™ (21)
1+ flpo) o

where

po=Go — VG — 1 (22)

When designing an equal ripple gain response we put
a Chebyshev restriction on the reflection coefficient
given in (18)
,_ o 6tV w)
- )
1+ €2V w)

Y (23)
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which inserted in (19) gives

Go? + 2V, %(w)

|
G|? = 24
/G| 1+ 2V.%(w) a4
where
{Po = Go— VG — 1
U (Go— VG =Det +Go— VG F o
Lepz’ = — = . (23)

VGi ¥ ot = VGr = 1

We now assume that Zyo is constant over the band
of interest (w.w, = w.w;0). It is now possible to design the
signal and idler filters for a desired gain response by
taking the proper low-pass filter with a response given
in (20) or (23) and transform them into their band-pass
equivalent with incorporation of the diode capacitance
in the filter structure. If the varactor is parallel tuned,
the shunt representation of the signal-idler iteraction
is used and if series tuned, the series representation.
When using this procedure it must be assumed that the
signal and idler circuits are independent of each other.

V. WipE-BAaND DEsSIGN FOR PrRACTICAL VARACTOR

When determining the filter for a practical varactor,
the design given in IV is not adequate. A practical
varactor contains a series loss resistance R and a series
inductance L; shown in Fig. 5. For the given equivalent
circuit it is convenient to use the series representation
of the signal-idler interaction given in Fig. 6.

R Lg
ANN—=TTG =

el
A

Fig. 5—Equivalent circuit for a practical varactor.

Ly (1-ad)eg ° Q (1-a?)tq L
AN —
SIGNAL 2 2 SIGNAL 2 IDLER
CIRCUIT -~ Hs | 10LER e L, SIRGUIT

1, COUPLING

2 g% 2 g% 2 .52
LA N B A N 25y = el (14 A0h = ¢ fvpglits

Fig. 6—Representation of signal-idler interaction
for a practical varactor.

As we assumed that the parametric amplifier is oper-
ated with an ideal circulator the voltage gain is equal
to the reflection coefficient in the signal circuit.

With the given notations the voltage gain G can be
written

ZNs + R - Zs* __ ZalO2 + (Zs* - R')(ZL* + R)
 Zwt+ R4 2. Zat— (Z.+R(ZX+ R

(26)

As before we assume that Z, and Z, are built up so that
(16) holds.



66 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

A) Degenerate Amplifier

To start with, we restrict the treatment to a degen-
erate amplifier where we have K?=1. The single side-
band voltage gain G for a degenerate amplifier now can
be written

Zt (- RZAR

7
Za* — (Z; + R)* @D

It is practical to start with an investigation of the Z,
curve that gives a constant voltage gain Go. This Z;
curve intersects the real R, axis at two points.

Go — 1
Rsl = /‘/ Zd
Go+1

Go+ 1
Re» = 1/ 7, (28)
Go—1
SV
c TG -1 VG —1
if a circle is drawn through these points we have
14 po? 2
(Zs —gr= P P gee (29)
} 1 e p()2 1 - p02

lpo = Go— VG? — 1

which is the Z, curve giving a constant reflection coeffi-
cient pp into Z,4 This curve can be used as an approxima-
tion of the Z, curve giving a constant voltage gain G
and to investigate the accuracy of the approximation we
calculate the gain obtained by using the approximation
for different values of Gy and R/Zga. The results are
given in Fig. 7 as AG[db] =10 log| Guax|2—10 log G,?
as a function of R/Z 4 with Gy as a parameter.

The calculations show that if a gain fluctuation of
0.4 db is tolerated the approximation is valid for
R/Z30<0.9. This is not a severe restriction as the
varactor is too lossy to give amplification when
R/Z40>1.0. For values of R/Z,, where the approxima-
tion is accurate we can define a reflection coefficient p,

Zs — Zg

== 30
Zs+Zd ( )

p

where Z, is given by (28) and now the gain can be re-

Gi=9
[95 dB]}

-4
Go=28
[i40 d8]

AG 48
AG dB

o h 7 []
[] ] 10
RiZ4 R/Z44

Fig. 7—Maximum deviation from constant
gain for constant p circle.

Janvary

written as:
(1+ [p]9r
4fplr

Using this approximation it is easy to find the filter
giving the desired gain response. '

When designing a maximally flat gain response we
put a Butterworth restriction on the reflection coeffi-
cient given in (30),

|G|2 ~ 31)

P02 + w?n
2= ’ 32
ol LT (32)
which inserted in (31) gives
G 2 + 2n
it Ll (33)

1+ flpo)ew™

where

po = Gy — /Gyt — 1. (34)

When designing an equal ripple gain response we put
a Chebyshev restriction on the reflection coefficient

given in (30),
po’ + €7V, ()

2= 35
lolr =" ) (35)
which inserted in (31) gives
G 2 + 2V7L2
[ G |2 ~ J__i”__@ (36)
1 -+ 692Vn2(‘0)
where
jpo=Go— VG2 — 1
ie,,‘“' _ (Go - V@)2 - 1)602 + Go - \/G02 ‘{—‘? ) (37>

l VG + e — VG — 1

Here the fluctuation in Z, introduced by the Chebyshev
ripple is neglected, which is permissible for gains and
ripples met in practice.

We now assume that Zg4o is constant over the band
of interest (w,w,~wy0?). If the varactor is series tuned,
so that the series inductance can be conveniently in-
corporated in the first series resonator, it is possible to
design the filter for a desired gain response by taking the
proper low-pass filter with a response given in equation
(32) or (35) and transform it into its band-pass equiva-
lent.

B. Nondegenerate Amplifier

When designing filters for the nondegenerate amplifier
where K?#1, the design formulas differ from the degen-
erate case. For the nondegenerate case the voltage gain
G can be written
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_ Za/K)? + (ZF — R)(Z, + R/K?)
(Zao/ K)? ~ (Zs + R)(Z, + R/K?)

(KZw)* + (Z: — K*R)(Z.* + R)

- x 8
(KZdO)2 — (ZX* 4+ K*R)(Z* + R) )

3

As for the degenerate case we start with an investiga-
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The calculations show that if a gain fluctuation of
0.2 db is tolerated the approximation is wvalid for
R/Z4<0.9. This is not a severe restriction as the
varactor is too lossy to give amplification when
R/Z4>1.0.

The approximation constant gain curves now can be
written as constant p curves,

tion of the Z, and Z,* curves that give a constant voltage - L+ po* Za 2p0  Za -~
gain Go. These curves intersect the real R axis at two 1= p2 K 1—pf K
points, Lt g2 (42)
z¢ =P gz, 4 - KZae®,
1 1 — p¢? 1~ po®
Rsl = (‘4 - B) Rll = K(A - B)
K where
S
Ry =— (4 + B) Rip = K(4d+ B) (39 A(Go) TAG)?
s U
B(Gv) B(Go) (43)
where [Zd = V[4(Gy]? — [B(GY]*
A —B= Go — 1 R? Gy—1 1 Go+171*  RT G‘o—l Go+1
e i s B (Ve
Gp+1 4 Go+1 K Go — 1 2 GU+1 K Gu—l
(40)
Go+ 1 R? Go+1 1 Gy—17* R Got+1 Gy — 1~
Y o Y, = s . (V=W
Gy — 1 Go — 1 Go+ 1 2 Go—l Go + 1.

If a circle is drawn through these intersections we have

1 1
Z, = — A + — Bei¢
K K (41)
Z* = KA + KBe.

These curves can be used as approximations of the
Z.and Z* curves giving a constant voltage gain Go. To
investigate the accuracy of the approximation we cal-
culate the gain obtained by using the approximation for
different values of Gy and R/Zas. We choose the im-
pedance ratio K =1 and the results are given in Fig. 8
as maximum deviation from constant gain.

LAl
2
Gy=2
[0 dB]

AG dB

{85 dB)

4G 48

0

10 ° 10
R/Z

40 RiZyq

Fig. 8—Maximum deviation from constant gain.

To be able to use the approximations we define a
reflection coefficient

Z* - KZ,
ZF + KZ,4

Zy — Z4/K
Z,+ ZyK

p = (44)

where Z, is given by (43).

On this reflection coefficient we can impose Butter-
worth or Chebyshev restrictions to obtain desired gain
responses. However, there is no longer any simple rela-
tion between the reflection coefficient po, and the gain
Gy as for the degenerate case. For the previously treated
case with K =% we plot the reflection coefficient pg as a
function of R/Z40 in Fig. 9.

osp
02
02 62 /
o o=
- [s5 ae] Gteas
01 L]
[ [0 a8}
] ¢
) 10 o 10
RiZyy ®izy

Fig. 9—Reflection coefficient po as a function of R/Zq.
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When designing a maximally flat gain response

s - O S0

2
1+ flpo)w?
we put a Butterworth restriction on the reflection coeffi-
cient in (44),

(45)

POZ + w?2n
14 o

9

ik : (46)

where po is given in (43).

When designing an equal ripple gain response
Go? + €V} w

’ G (z ~ _OH_”ﬁQ, (47)

1+ ¢V, %w)

we put Chebyshev restriction on the reflection coeffi-
cient in (44)
po* + €V (w)

48
14 &V*w) ()

| p|? =

where po is given in (43). The ripple €2 can be de-
termined by calculating the reflection coefficient p; for

2
} G I2 _ GO + 1
‘ 14 ¢,
from (43) and ¢,? is given by
2 + 2
o= 2 (49
1+ &2

When giving formulas for the equal ripple gain re-
sponse, we have neglected the fluctuations in Z; intro-
duced by the Chebyshev ripple, which is permitted for
gains and ripples met in practice.

We now assume that Z; is constant over the band of
interest (w,w,~wsw,0). If the varactor is series tuned,
so that the series inductance can be conveniently in-
corporated in the first series resonator, it is possible to
design the signal and idler filters for a designed gain
response by taking the proper low-pass filters with a
response given in (46) or (48), and transform them into
their band-pass equivalents. When using this procedure
it is assumed, as for the ideal varactor, that the signal
and idler circuits are independent of each other. In prac-
tical design this assumption does not necessarily hold.
This can be compensated by calculating the reactance
from the signal circuit at idler frequency, and vice versa,
incorporating these reactances in the first series or
parallel resonator, according to the actual set up. Then
the first series or parallel resonators can be modified
by step-by-step approximations.

C. Choice of Initial Varactor Tuning

It has previously been shown that an easy design
method can be used if the signal and idler filters start
with a series tuning of the varactor, since transformed
low-pass filters can then be used.

January

If the filters are started with a parallel tuning of the
varactor, the varactor end of the filters, which consist
of the coupling impedance in series with the varactor
capacitance and inductance, must be transformed into
a parallel circuit. The resistive part of this circuit is
frequency dependent, and the proper filters must be
obtained by solving (10). This leads to filters of the
type given in Fig. 3, with added compensating re-
actances to fulfill Z,= K2Z,*. The frequency dependence
in the resistive part can be neglected and transformed
low-pass circuits can be used, if the reactance from the
varactor inductance is small compared to the reactance
from the varactor capacitance, but this is ordinarily
not the case at microwave frequencies.

VI. Cuoick or IMPEDANCE RATIO

To make full use of the bandwidth potentialities in a
varactor, the impedance ratio K should be chosen to
give the signal and idler filters the same bandwidth
capabilities, The optimum impedance ratio can be de-
termined by applying Bode’s® theorem on reflection
coefficient limitation and its dual formulated by Fano.?®
The formulations are given in Fig. 10.

These theorems hold for low-pass and band-pass cir-
cuits alike. To make the signal and idler filters have the
same bandwidth capabilities we have: if the varactor
is parallel tuned the varactor ends of the signal and
idler filters should have the same RC product, and if the
varactor is series tuned the varactor ends of the signal
and idler filters should have the same R/L ratio. This
gives us the following values of K for different tuning of
the varactor:

1) for a parallel-tuned ideal varactor,

K2=1 (50)
2) for a series-tuned ideal varactor,
w802
K? = — (51)
Wy~

MATCHIRG o =
CIREYIT g R g“’ In1/1pl?) & = 2/re

L
L, R ®m(i/]o]?) dw = 2m(R/L)
% % o

Fig. 10—Theorems on reflection coefficient limitation.

MATCHING
CIRCHIT

. 3 H. W. Bode, “Network Analysis and Feedback Amplifier De-
sign,” D. Van Nostrand Co., Inc., New York, N. Y., pp. 360-367;
1945.

. *R. M. Fano, “Theoretical limitations on the broadband match-
ing of arbitrary impedances,” J. Franklin Inst., vol. 249, pp. 57-83;
January, 1950; pp. 139-154, February, 1950,
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For a practical varactor we only consider series tun-
ing of the varactor. Reactive elements are added in
series to the varactor to obtain series resonances to
wso and w;e. We assume that the varactor can be tuned
independently at w,o and w,;. For three different cases
we have:

1) The self-resonant frequency of the wvaractor is

above wyp and w,o
K= O,

2
w,0

(52)

2) The self-resonant frequency of the varactor is be-
tween w,o and w;o
K? = w;0*(1 — o®)CyLs, (33)
3) The self-resonant frequency of the varactor is be-
low wgo and w,g

K?=1. (54)

As pointed out by Matthei,? it is difficult to tune the
varactor independently at w.o and w,o, unless there is a
first series resonator common to signal and idler. The
resonator is series resonant at both w,y and wy, and the
value of K can be expressed in the reactance shapes of
the resonator,

xJ =reactance slope at wy
x] =reactance slope at wy

(55)

VII. BANDWIDTH LIMITATIONS

When designing an amplifier for a certain gain Gy and
increasing the order of the associated Butterworth or
Chebyshev filters without limit, the bandwidth goes
asymptotically toward a limit (Aw),. This limit can be
determined by applying the theorems on reflection co-
efficient limitation. With the chosen gain Gy is associated
a reflection coefficient p¢ in the signal and idler circuit.
In the general case pg is determined by equation (43).
We give the limiting bandwidth for a series-tuned prac-
tical varactor in the nondegenerate case. The theorem
on reflection coefficient limitation gives

f)ulnt = x 56
(w>wn_"_”7'L' ()

po

We give (Aw),, and lim (Aw)., when R—0 for the cases
where the optimum impedance ratio was determined.
1) the self-resonant frequency is above w, and w;o

l[ (Aw)w = Hﬁ wsowm(l — aQ)CdZd
1 e (57)
) = TG = v =y | *Y e
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2) the self-resonant frequency is between w,o and wyo

1 —a®)Cs
(Aw)oo = /‘/( ) 4
l npol
LingAOw)w - I In (Go - \/Go?‘ - 1) }

(58)

/‘/wgo [eld
[CFY1] \/(1 - az)CdL v

3) The self-resonant frequency is above w,p and w;

ks Zd
(Aw)y, =
|Inp| L
T
Lim (Aw), = S
R—0 \ In (Gy — VGo> — 1) |
1 o (59)
Vgwo (1 — a?)Cel, '
4) with a common series-resonator
iy Zd
(B = e 2
[Inpo| ) x/
™
Lim (Aw), = —
R—0 \II’I(GQ'—\/GO2 -_ 1)|
1 1 a 60)
'\/ws()wzo \/Xs/xz/ (1 — (X2>Cd (

Zqis determined from equation (43).

These formulas for the limiting bandwidth can be
used to determine the optimum ratio between idler and
signal frequency, and to determine how the bandwidth
is effected by the varactor loss resistance. The ratio

I-ln (Go—‘
| 1n pol

VG = 1| 2z
ZdO

determines to what degree the loss resistance decreases
the limiting bandwidth as compared to the limiting
bandwidth of a corresponding lossless varactor. Form-
ulas for the limiting bandwidth for an ideal varactor
have previously been given by Kuh and Fukada}? and
Aron,10

Aron'? also gives the relation betweern the 3-db band-
width (Aw)y of the reflection coefficient in a Butter-
worth filter of Nth order and the limiting bandwidth
(Aw)., which can be written

(Aw)ny
(Aw)
L el
= — In pg| sin [—— (1 — 2p0H)~ 1/2le. (61)
w 1 - p()l/N 2
10 R, Aron, “Gain bandwidth relations in negative resistance

amplifiers,” Proc. IRE, vol. 49, pp. 355-356; January, 1961,
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VII. WipE BaND DESIGN FOR 1.ossy VARACTORS

Calculations have shown that the approximations
made in section V are very accurate for most practical
wide-band design and that the accuracy increases with
increasing gain and decreasing impedance ratio K.
When designing amplifiers with low gain below 10 db
the made approximations can be less accurate for lossy
varactors with large R/Z; and a different procedure
must be used. We restrict ourselves to finding the design
formulas for a Butterworth gain response. The pro-
cedure used is to start from an expression for the gain
(27) or (38) form {G’ 2 and expand Z, or Z;in a Taylor
series, as in (9). The Taylor expansion is inserted in the
expression for [ Gl 2 and the derivative relations for
Butterworth gain can be determined. We treat the non-
degenerate case which also includes the degenerate
case and assume that Zgo is constant over the band of
interest. As Z40 is constant, only even derivatives of R,
and R; and odd derivatives of X, and X; shall be
existent. This means that band-pass filters with all
series and parallel resonances tuned to wso and w;yo, fulfill
the relations, The relations between the derivatives
giving a Butterworth gain response can be written

RW = X, = 0

1{Go2[(Zdo/Ix’)2 — (R,® + R)(R,™ + R/KY)]* =
n=

Go*(2R,® + R + R/K?)[(Zao/K)? — (R,¥ + R)(R, + R/K?)]
+ (2R, — R + R/K)[(Zao/K)? + (R, — R)(R.® + R/K?)]

Janvary

PARALLEL TUNED SERIES TUNED

Fig. 11—Z, curve for constant gain with
approximative Butterworth circles.

IX, WIDE-BAND DESIGN FOR VARACTORS
wiTH LARGE CAPACITANCE SWING

For varactors with large capacitance swing (large a),
the bandwidth is increased, so that the approximation
that Z g is constant over the band, is no longer adequate.
Filters designed for constant Z,, will give a gain response
with a slope especially noticable for large idler to signal
frequency ratios. If R/Zao is small enough to allow the
previously made approximations, the signal and idler

[(Zao/K) + (R.® — R)(R,® + R/K?)]”

(62)

[XS(I)]2 = R,®

|
|
|
n=2i
{ R® = X,® =0

When the signal filter is determined the idler filter
can be determined by scaling, since Z,= K*Z;*,

By knowing how the Z, and Z,* curves for constant
gain are affected by increasing R/Z 40, some rules for
selecting proper filters can be made by studying the
constant gain curves, as shown in Fig. 11. Increasing
R/Z 40 makes the Z, curve for constant gain more ellipse
shaped. By studying the Z; curve in Fig. 11 with asso-
ciated Butterworth circle, we can make the following
rules of thumb for choosing proper filters:

Series-tuned varactor—when choosing a standard filter,
the impedance level at the varactor end should be lower
than that indicated by the intersections the Z, curve
makes with the real axis;

Parallel-tuned varactor—when choosing a standard
filter, the impedance level at the varactor end should be
higher than that indicated by the intersections the Z,
curve makes with the real axis.

The impedance level at the varactor end can be de-
termined approximately, by comparing the third equa-
tion in (62) with the corresponding equation (10) for a
Butterworth filter.

G*(2R,™ +~ R+ R/K*) — (R/K*+ R)

filters shall be designed to match the signal and idler
terminations, maximally flat into the frequency de-
pendent Z,/K and KZ; for a maximally flat gain re-
sponse. The design criteria will be to fulfill (10) at the
signal and idler terminations and Z,=K?Z,* at the
varactor end of the filters. For the nondegenerate case
a complication is that both Z; and py vary with Zao.
However, a simple calculation shows that py varies con-
siderably less than Z4 over the band (For G¢?=10,
K=wu/wiw=3% R/Za(ws0)=0.2, Z; varies +35 per cent
and py+5 per cent over an octave-signal bandwidth).
Thus it is a reasonable approximation to design for
maximally flat matching.

For the degenerate case, only even derivatives of
Zgo are existent and a band-pass filter with all series
and parallel resonances tuned to w,s can be used. For the
nondegenerate case, the filters will be of the type given
in Fig. 3 with a compensating reactance added.

An approximative design method is indicated by
Matthei.? The filters are designed for constant Zgo and
then the resonators are detuned by cut and try to give
an acceptably smooth gain curve.
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X. STABILITY

When designing wide-band parametric amplifiers,
stability must be considered. The criterion for stability
is that the voltage gain G has no poles in the right half
frequency plane (Re [p]<0).'t Using the gain expres-
sions in (17), (27) and (38) we have the following stabil-
ity criteria:

1) for an ideal varactor,

1
EZdO(P) —Z(p) =0

(63)
KZao(p) — ZX(p) =0
has no solution for Re[p]<0;
2) for a practical varactor degenerate case,
[Zio — Rl — Z, =0 (61)

has no solution for Re [p]<0;
3) For a practical varactor nondegenerate case,

VG -2

{ K 4 \K? 2 \K2 T
. R? 2‘“ R . (65)

“:/‘/(«KZIIO) +’4‘(1_K) ‘?(1‘1"1&):]

l _'ZL*:()

has no solutions for Re [p]<0.

Applving the Nyquist criterion as formulated by
Hughes,'* we can reformulate the stability criteria. We
take the most general case of a practical varactor in the
nondegenerate case.

To have a stable amplifier, a complex plot of Z,(w;)
shall not encircle (1/K)Zei, and a.complex plot of
Z . *(w;) shall not encircle KZ ;4

Z —4/7%52(1 R) R<1—I—K> (66)
crit £4d0 1 \K 2 K .

This means that for a series-tuned varactor, the im-
pedance level is higher at the terminations than at the
varactor end, and for a parallel-tuned varactor the
impedance level is lower at the terminations than at the
varactor end. In Fig. 12, we show the Z, plot of two
possible Butterworth filters of second order.

As pointed out by Aron,'? stability is no limitation,
since of possible Butterworth of Chebyshev filters, the
filters with maximum bandwidth have the poles of p in
the left half plane (Re [p]<0), which ensures stability.
This means that when determining proper low-pass

11 Tt can be shown that the signal-idler interaction is valid in the
complex frequency plane if signal and idler voltages of the form
€7t cos wt are introduced into (11).

12V, L. Hughes, “Nonlinear Electrical Networks,” Ronald Co.,
New York, N. Y., pp. 166-168; 1960.
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Fig. 12—Z; plot for two Butterworth filters of second order.

filters with Butterworth or Chebyshev response, the
solutions with the smallest L:s and C:s should be
chosen.

XI. DesioN EXAMPLES

We start with determining the same low-pass filters
that will give stable parametric amplifiers. In Fig. 13
stable Butterworth filters of second and third order are
given,

We will now apply the described design method to the
design of a degenerate parametric amplifier with a single
sideband gain of 12 db. The design will be made for
maximally flat gain responses of first, second and third
order, The diode used has a pumping factor a=0.25 and
Z a0 and wo are normalized to unity. The diode loss re-
sistance is R/Z40=0.1. The diode series resonance is
above the operating frequency.

The design procedure is as follow. Z; and po are de-
termined from (28) and (29) (G¢?=16, py=10.127,
Z1=0.897). (Elsewhere,"® the author has given diagrams
of py, Z, and maximum gain deviation for different
gains, impedance ratios and varactor losses., These dia-
grams are helpful in numerical design.) The inductance
needed to resonate the varactor is determined (L.=4).
Using the formulas in Fig. 13, the low-pass network is
determined (Ry=Z,4, Li=L). The band-pass filter is
determined by resonating the low-pass network o w;e.
The gain is determined by (27). The result is given in
Fig. 14.

We also give a simple illustration of how to com-
pensate for frequency dependence in Zgo as discussed
in section I X, We assume that we have an ideal varactor
with K =w,o/w.0=% and a=0.5. The circuits used are
given in Fig. 15. The varactor is series tuned. w,o is
normalized to unity.

The compensated circuit is dimensional to fulfll (10)
at the signal and idler terminations and to make
X (ws0) =X, (w.0) =0. The midband gain is chosen to
14 db. The gain for the two circuits are shown in Fig. 16.

The method gives no great advantage for the simple
circuit treated, but can be extended to maximallv-flat
gain responses of higher order, although this leads to
complicated equations,

13 B, T. Henoch, “A New Method for Designing Wide-Band
Parametric Amplifiers,” Stanford Electronics Labs., Stanford Uni-
versity, Stanford, Calif., Tech. Rept. No. 213-1; December, 1962.
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Fig. 13—Stable low-pass filters with Butterworth
response of second and third order.

15 _ GAIK
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Fig. 14—Single sideband gain for a degenerate parametric amplifier
Wiéh maximally-flat gain response of first, second and third
order.

XIII. CoNcLUSIONS

A simple method for designing wide-band parametric
amplifiers has been described. The method is applicable
to most practical varactors if the varactor is initially
series tuned.

The problems remaining to be solved are: filter design
for an initially parallel-tuned varactor, and filter design
compensating for the frequency dependence in the
coupling impedance. Both problems are associated with
the problem of designing filters that match a constant
source impedance, maximally flat into a frequency de-
pendent resistance.

Janvary

(1-a2)c, (t-a)e,

—
SIGNAL
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cIRCHIT !
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Fig. 15—Circuits for nondegenerate parametric amplifier.
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Fig. 16—Gain for a series-tuned nondegenerate amplifier with and
without compensation for frequency dependance in Zgo.
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